Skip to Content

Cardiac Imaging Tests


Thomas Cascino

, MD, MSc, University of Michigan;

Michael J. Shea

, MD, Michigan Medicine at the University of Michigan

Last full review/revision Jul 2021| Content last modified Jul 2021

Cardiac imaging tests can delineate cardiac structure and function. Standard imaging tests include

Standard CT and MRI have limited application because the heart constantly beats, but faster CT and magnetic resonance techniques can provide useful cardiac images if the rhythm is regular and the heart rate is controlled; sometimes patients are given a drug (eg, a beta-blocker) to slow the heart rate during imaging.

In ECG gating, the image recording (or reconstruction) is synchronized with the electrocardiogram (ECG), providing information from several cardiac cycles that can be used to create single images of selected points in the cardiac cycle.

CT gating uses the ECG to trigger the x-ray beam at the desired portion of the cardiac cycle, exposing the patient to less radiation than gating that simply reconstructs information from only the desired portion of the cardiac cycle (gated reconstruction) and does not interrupt the x-ray beam.

Chest x-rays

Chest x-rays are often useful as a starting point in a cardiac diagnosis and should always be done when a diagnosis of heart failure is considered. Posteroanterior and lateral views provide a gross view of atrial and ventricular size and shape and pulmonary vasculature, but additional tests are almost always required for precise characterization of cardiac structure and function.


Spiral (helical) CT may be used to evaluate pericarditis, congenital cardiac disorders (especially abnormal arteriovenous connections), disorders of the great vessels (eg, aortic aneurysm, aortic dissection), cardiac tumors, acute pulmonary embolism, chronic pulmonary thromboembolic disease, and arrhythmogenic right ventricular dysplasia. However, CT requires a radiopaque contrast agent, which may limit its use in patients with renal impairment.

Abnormal CT of the Heart
Contrast CT Showing Normal Coronary Arteries

Electron beam CT, formerly called ultrafast CT or cine CT, unlike conventional CT, does not use a moving x-ray source and target. Instead, the direction of the x-ray beam is guided by a magnetic field and detected by an array of stationary detectors. Because mechanical motion is not required, images can be acquired in a fraction of a second (and recorded at a specific point in the cardiac cycle). Electron beam CT is used primarily to detect and quantify coronary artery calcification, an early sign of atherosclerosis. However, spatial resolution is poor and the equipment cannot be used for noncardiac disorders, so newer standard CT techniques are becoming preferred for cardiac use.

Multidetector CT (MDCT), with ≥ 64 detectors, has a very rapid scan time; some advanced machines may generate an image from a single heartbeat, although typical acquisition time is 30 seconds. Dual-source CT uses 2 x-ray sources and 2 multidetector arrays on a single gantry, which cuts scan time in half. Both of these modalities appear able to identify coronary calcifications and flow-limiting (ie, > 50% stenosis) coronary artery obstruction. Typically, an IV contrast agent is used, although nonenhanced scans can detect coronary artery calcification.

MDCT is currently used mainly for patients with indeterminate stress imaging test results as a noninvasive alternative to coronary angiography. The primary benefit of MDCT appears to be to rule out clinically significant coronary artery disease (CAD) in patients who are at low or intermediate risk of CAD. Although the radiation dose can be significant, about 15 mSv (vs 0.1 mSv for a chest x-ray and 7 mSv for coronary angiography), newer imaging protocols can reduce the exposure to 5 to 10 mSv. The presence of high-density calcified plaques creates imaging artifacts that interfere with interpretation. Nonenhanced scans to evaluate for coronary artery calcification can be done with even lower radiation exposure. The amount of coronary artery calcium present can be used to determine10-year risk of CAD. Recent studies suggest that absence of coronary artery calcium portends a very favorable prognosis.


Standard MRI is useful for evaluating areas around the heart, particularly the mediastinum and great vessels (eg, for studying aneurysms, dissections, congenital heart disease, and stenoses). With ECG-gated data acquisition, image resolution can approach that of CT or echocardiography, clearly delineating myocardial wall thickness and motion, chamber volumes, intraluminal masses or clot, and valve planes.

Sequential MRI after injecting a paramagnetic contrast agent (gadolinium-diethylenetriamine pentaacetic acid [Gd-DTPA]) produces higher resolution of myocardial perfusion patterns than does radionuclide imaging. MRI is generally considered the most accurate and reliable measure of ventricular volumes as well as ejection fraction. However, patients with impaired renal function can develop nephrogenic systemic fibrosis, a potentially life-threatening disorder, after use of gadolinium contrast. Contrast agents are being developed that are safe to use in patients with impaired renal function.

When MRI is done with contrast, 3-dimensional information on infarct size and location can be obtained, and blood flow velocities in cardiac chambers can be measured. MRI can assess tissue viability by assessing the contractile response to inotropic stimulation with dobutamine or by using a contrast agent (eg, Gd-DTPA, which is excluded from cells with intact membranes). MRI discriminates myocardial scar from inflammation with edema. In patients with Marfan syndrome, MRI measurements of ascending aorta dilation are more accurate than echocardiographic measurements.

Magnetic resonance angiography (MRA) is used to assess blood volumes of interest (eg, blood vessels in the chest or abdomen); all blood flow can be assessed simultaneously. MRA can be used to detect aneurysms, stenosis, or occlusions in the carotid, coronary, renal, or peripheral arteries. Use of this technique to detect deep venous thrombosis is being studied.

Positron emission tomography (PET)

PET can demonstrate myocardial perfusion and metabolism and is sometimes used to assess myocardial viability or to assess myocardial perfusion after an equivocal single-photon emission CT (SPECT) study or in very obese patients.

Perfusion agents are radioactive nuclides that are used to trace the amount of blood flow entering a specific region and are therefore useful in unmasking myocardial perfusion deficits not evident at rest. They include carbon-11 (C-11) carbon dioxide, oxygen-15 (O-15) water, nitrogen-13 (N-13) ammonia, and rubidium-82 (Rb-82). Only Rb-82 does not require an on-site cyclotron.

Metabolic agents are radioactive analogs of normal biologic substances that are taken up and metabolized by cells. They include

  • Fluorine-18 (F-18)–labeled deoxyglucose (FDG)
  • C-11 acetate

FDG detects the enhancement of glucose metabolism under ischemic conditions, and can thus distinguish ischemic but still viable myocardium from scar tissue. Sensitivity is greater than with myocardial perfusion imaging, possibly making FDG imaging useful for selecting patients for revascularization and for avoiding such procedures when only scar tissue is present. This use may justify the greater expense of PET. Half-life of F-18 is long enough (110 min) that FDG can often be produced off-site. Techniques that enable FDG imaging to be used with conventional SPECT cameras may make this type of imaging widely available. FDG has also been used to detect inflammatory cardiovascular disorders (eg, infected pacemaker wires, aortic vasculitis, cardiac sarcoidosis).

Carbon-11 acetate uptake appears to reflect overall oxygen metabolism by myocytes. Uptake does not depend on such potentially variable factors as blood glucose levels, which can affect FDG distribution. C-11 acetate imaging may better predict postintervention recovery of myocardial function than FDG imaging. However, because of a 20-minute half-life, C-11 must be produced by an on-site cyclotron.

Drugs Mentioned In This Article

Drug Name Select Trade
dobutamine No US brand name

Copyright © 2022 Merck & Co., Inc., known as MSD outside of the US, Kenilworth, New Jersey, USA. All rights reserved. Merck Manual Disclaimer